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A regularization procedure with a regularization parameter ~ is developed which 
may be applied to multiple Feynman integrals in Minkowski space. The regu- 
larization is carried out in momentum space and provides a rigorous method for 
studying Feynman integrals as multiple integrals in real variable theory. The 
regularized integrals are defined by changing the measure of integration H i dx i 
to 1-1, (1 + x, 2 ) - ~/2 dxl, 8 > 0, with a corresponding change defined in Minkowski 
space. We then develop a power counting convergence criterion for the absolute 
convergence of the integrals in terms of the parameter 8 as a function of the 
so-called power asymptotic coefficients of Feyaman integrands. An application 
to quantum electrodynamics is carried out. 

1. INTRODUCTION 

Regularization methods (e.g., Pauli and Villars, 1949; Slavnov, 1972) 
and dimensional regularization methods (e.g., 't Hooft and Veltman, 1972, 
BollinJ and Giambiagi, 1972; Ashmore, 1972; Cicuta and Montaldi, 
1972; Wilson, 1973; Blekher, 1982; Speer, 1974; DeVega and Schaposnik, 
1974) have been quite useful in evaluating Feynman integrals which may be 
potentially divergent. Also, much research has been done in these papers 
that provides a rigorous treatment of the problem of regularization. In this 
paper we consider a regularization method for Feynman integrals which 
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may be treated by the method of real variables, introducing in the process a 
regularization parameter 8. The regularization method may be unambigu- 
ously applied to multiple Feynman integrals in Minkowski space, and 
provides a method for rigorous treatment of Feynman integrals. This is the 
main purpose of the present work, as it allows us to change orders of 
integrations at will, and obtain existence criteria as a function of the 
regularization parameter & A regularization scheme is not useful unless it 
may be unambiguously and uniquely applied to multiple integrals and 
convergence of the regularized integrals may be established not only in 
Euclidean space, as is usually done, but also in Minkowski space. We 
develop a power counting theorem for the regularized Feynman integrals 
defined in momentum space, and a power counting convergence criterion 
which puts a restriction on the parameter 6 as a function of the so-called 
power asymptotic coefficients of Feynman integrands. The regularization 
method is so chosen that we are able to bound the absolute value of 
Feynman integrals in Minkowski space by their corresponding Euclidean 
integrals and then study the resulting integrals as a function of the parame- 
ter & The regularization method is described in the next section, and the 
power counting convergence criterion is studied in Section 3. Finally we 
carry out an application to quantum electrodynamics in Section 4. 

2. THE REGULARIZATION PROCEDURE 

A Feynman integral may be written, in momentum space, in the 
by-now familiar form 

L 

F( P, Ix, e) = fu, dKA( P, K, tz, e) I-I D[ -1 (1) 
I = 1  

3 

d K = / I  ( d k , ) = / I  I-I ek/ 
i = 1  i = 1  j = O  

0 3 0 3 / ~ = ( <  ..... < ) ,  e = ( e ~  ..... p~), 

z~,--[o, ~ + Ix,~- i~(o, ~ + Ix~)] 

j=1 j=l 

(2) 

~ =  (ix1 . . . . .  Ix~) 

(3) 

(4) 

(5) 
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We consider only the case with St > 0. We define a regularized Feynman 
integral by making the change 

n f i (  m2-ie(k2i +m2)m2 )28 i~=l(dki)~ (dki), 3 > 0  (6) = i l l  k~+ 

where m is an arbitrary mass scale. The choice of regularization in (6) is 
quite convenient as we may bound the integral 

F~(P,l't,e) = .= k~ +m2-ie(k2i +m2 ) 

L 
x (ak,)a(e, I(, ~, ~) FI D ;  1 (7) I=1 

in absolute value by 

n ( k~E +m2m 2 )28 L C,. , f  I-I (dk,)lA(P,K,l~,e)l l-ID~ 1 (8) 
I=1 

where 

 -/lJ212  L G,8= +(1+ d]  ] 

G =  (k~ D,~ = 0,~+ d (91 

In writing the inequality leading to (8), we used the bound (Zimmermann, 
1968; Hahn and Zimmermann, 1968) 

~;J 1 (10) 

For e > 0, it is then sufficient to study the absolute convergence of the 
Euclidean counterpart of (7) defined by 

n ( m2 ) 2 8 k 2 i E  +m2 L F~(t',~,, ~)~ = / l-I (ak,)A(e,  IC,~,dI-[z)~  ~ (11) 
/=1 
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3. P O W E R  C O U N T I N G  C R I T E R I O N  

We develop a power counting convergence criterion for the integral in 
(11) (with e >/0) in terms of the parameter & Since the analysis given below 
is based on an induction argument over the dimensionality 4n of the 
integral in (11), we may further bound the integral in (11) in a form suitable 
for carrying out the analysis over one-dimensional subspaces first. To this 
end note that 

3 

(k~e+n'Z)-l< I--[ [(k/)2+rn2] -1/4 (12) 
j=o  

Hence we are led to consider integrals of the form 

4tl  
. 2 . .  

ax,:tx,.:._ .... ) (13) 

for 8 > 0. We make use of the fact that Feynman integrands belong 
(Weinberg, 1960; Fink, 1968; Manoukian, 1982a) to class B4,,+4m. That is, 
let P be a vector in the (4n +4m)-dimensional  Euclidean space R 4"+4", 
such that k ~ . . . . .  k 3, p0 . . . . .  p O may be written as linear combinations of the 
components  of the vector P. Suppose 

P = L a ~  1 . . . 7 / k + . . .  + L k r / k + C  (14) 

1 ~< k ~< 4n + 4 m ,  where L 1 . . . . .  Lk are independent vectors. Then we may 
find constants bl > 1 . . . . .  b k > 1 such that for ~h >/bx . . . . .  ~/k >/bk, we may 
write for the integrand A(  P, K, ~, e)FIp=xD~ 1 = g(P):  

, o ~ ( p )  .~. O ( , . f . / ~ ( { L l } )  . . . T/~({LI . . . . .  Lk}') (15) 

where the a ( ( L  1 . . . . .  L~}) are real numbers called power asymptotic coeffi- 
cients, and depend on the subspace {L a . . . . .  L~} generated by the vectors 
L 1 . . . . .  L i, i = 1  . . . . .  k. 

Consider the one-dimensional integral 

F(P) = L{~(I + x2) -8/2 dxf(P +Lx) (16) 

where f belongs to class B4n+4 m. By the Heine-Borel  covering theorem we 
may write (Weinberg, 1960) the interval ( - ~ , o o )  as the union of the 
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following sets: 

S •  { x : x = z ~ ,  " " ~ h , ,  I z l=  +-z>--bo > 1 )  (17) 

J , C , =  ( x : x = G , n l " " n k  + " '"  +U, ' , . . . ~ f l , . ' ' ' n k  + Z n r + ~ ' ' ' n k  

b o ( i l " ' "  i,.) <~ [z[-- + z ~< ,rXi,. . . i .},  1 ~< r ~<k (18) 

05 = ( x :  = �9 +<, 
J i  t . . . i ,  x Ui[~l  ""  ~ k  + " ' "  ---iknk -'[- Z 

0 ~ Izl = + z <<. b o ( i t . . ,  i k )  } (19) 

where P = L:Tt �9 �9 �9 ~lk + " " " +Lk~tk + C .  We may then bound the integral in 
(16) as 

k 

_ : t  _4- r = l  i l . . . i  r ~.,i, 

+ E E , , s  dxl/(I,+I.x)L (20) 
_ i~--., o~.~ 

A bound to the integrals fs" may be readily obtained to be given by 

M f b ? d l z l l z l - n + ~  ~{L'L'})''" G ~{''L~ ..... '~}>~ " '"  ~k (21) 

for some constants M > 0, b~ > 1 . . . . .  b k > 1, with ~h >/b~ . . . . .  ~/k >/ bk, and 
the latter integral exists for 

3 > 1 +  a ( ( L ) )  (22) 

If we denote the subspace {L} by I, then for any e '>  0, the condition 

8 > l + a ( { L } ) + e ' = m a x [ a ( S ' ) + d i m S ' ] + e '  (23) 
S ' c l  

implies the convergence of the integral (21) and hence also the integrals fa • 
in (20). (Note that, trivially, I is the only non-null one-dimensional sub- 
space of the one-dimensional space I. Also note that for x ~ J +, x = zaT~ 
"" " rk-) It is interesting to note that with the criterion in (23) satisfied, we 
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may bound the expression in (21) by 

1 M '  ~ ({L'Lt }) + 1  . . . TI~ . ({L.L,  . . . . .  L k } ) +  1 

( ' -  max[ct(S')+dimS']-e') 
S ' c  I 

(24) 

thus exhJbiting a singularity for 8 ---, + (max[a (S ' )+d im S ' ]+  e'). The intro- 
duction of the arbitrary parameter e '>  0 will be convenient for generali- 
zations to arbitrary dimensions. Upper-bound values for the remaining 
integrals in (20) may be readily obtained, by using in the process that for 
any E' > 0, In rt ~< ~'~/e', for "q >/1, to obtain with the convergence criterion in 
(23) satisfied: 

iF(P) l ~ Cn~,({L, I t . . .  ~ , ( { L I  .....  Lk I (25) 

where, in a standard notation, 

a t ( ( L  1 . . . . .  L r } ) =  max [a(S')+dimS'-dimSr]+e' (26) 
A(1)S '=S ,  

S, = {L t . . . . .  L,}, with e' an arbitrary positive number that may be chosen 
as small as we please. Also, there exist constants b' 1 > 1 . . . . .  b~. > 1 such that 
"01 >/b~ . . . . .  "ok >/b~. in (25). (Note that with the restriction e '>  0, no loga- 
rithmic growth occurs in the analysis. This condition will be sufficienl for 
our purposes in this work.) 

Now we generalize our results to arbitrary dimensions by induction. To 
this end we consider the integral 

4 n  

where L1 , . . . ,L4 ,  ) is an orthonormal set of vectors. Let 12 be a ( 4 n - 1 ) -  
dimensional subspace with which the integral jtl-I 4"i=2 dx,(.) is associated, 
and let the subspace with which the one-dimensional x~ integration is 
associated be denoted by I~. As induction hypotheses suppose that the 12 
integral belongs to class B K (K = 4m + 1) and is absolutely convergent for 

8 >  max [a(S')+dimS']+e 2 (28) 
S ' c  12 

where ~2 is an arbitrary small positive number, with asymptotic coefficients 
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of the standard form 

a h ( S )  = max [ a ( S ' ) + d i m S ' - d i m S ] + e  2 (29) 
A(12)S'= S 

Again with the restriction e I > 0 no logarithmic growth occurs in the 
analysis. From the one dimensional analysis, given above, we then conclude 
that (27) is absolutely convergent if 

max [ah(S")+dimS")]+ q (30) 6 >  
S "  c I l 

for an arbitrary small positive number e r From (29) we may rewrite 
(Weinberg, 1960) the condition in (30) as 

8 > max [a(S)+dimS] +q  + e z 
S c l  

- max [ a ( S ) + d i m  S] + e' (31) 
S c l  

Since maxsc  t[a(S)+dim S] >1 maxsc  h [ a ( S ) + d i m  S], we may then state, 
by an application of Fubini's theorem in the process, that (27) is absolutely 
convergent if the power counting criterion in (31) is satisfied, and its value is 
independent of the order of integrations taken. The asymptotic coefficients 
of F(P) may be readily obtained from (26) and (29) to be given by 

a , ( S ) =  max [a(S ' )+dimS ' -d imS]+e"  (32) 
A ( 1 ) S ' = S  

We may then state that the integral in (11) (and (7) for e > 0 )  is 
absolutely convergent for 8 > maxsct[a(S)+dimS]+e', where e' is an 
arbitrary positive number, I is the subspace associated with the integration 
variables, and the a(S) are the power asymptotic coefficients of the 
Feynman integrand. The distributional e-* + 0 limit of the integral in (7) 
may be carried out as in (Lowenstein and Speer, 1976; Manoukiam 1983a). 

The power counting convergence criterion applies to Feynman integrals 
even before subtractions are carried out as long as the convergence criterion 
in (31) is satisfied. For subtracted integrands 

max[a( S)+dimS] <~ - 1  
S o l  

(Manoukian, 1982b), and since e' is an arbitrary positive small number 
which may be taken to be smaller than one, we note from (31) that 8 may 
be taken to be zero as expected. 
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4. APPLICATION TO QED 

Recently (Manoukian, 1983b) the so-called Schwinger's (Schwinger, 
1953, 1951; Johnson, 1965) gauge-invariant procedure for the current by a 
suitable limiting method of a line integral has been applied to the whole 
expression for the vacuum-to-vacuum transition amplitude for QED in the 
presence of external source, thus taking into consideration all closed fermi- 
on loops. Our method of regularization in this paper to QED consists of 
using this gauge-invariant procedure, then apply the loop integration regu- 
larization developed in Section 3. The vacuum-to-vacuum transition ampli- 
tude in the presence of external sources, taking into account Schwinger's 
line integral for the current, is 

(0+ 10_)= NS[ DA]exp[iS( dx)(dx')Tl(x)G(x, x'; eA ) ~I (x')] 

x e x p [ -  E (e)-Nf (dQ'------~) "" (dQN------~) 
N=2,4,6 . . . .  N J (2rr) 2 (2~r) 2 

• 6(Q, + - . .  +Qu)A~"(Qx)...A*'N(Q1v) 

/ r 1 
(33) 

where G(x, x'; eA) satisfies the differential equation in the presence of the 
"classical" vector potential A~(x): 

[ ~ + m-ey~A~(x)lG(x,x'; eA)=6(x- x" ) (34) 

Also 

where 

((ap) o I %, ...~,N(Qt ..... QN) = j (2~r)4 (N) ~, ...~N(Q1,---, QN; P) (35) 

and 0 i is the operation of setting Qi = 0..ga(A, J )  is the Lagrangian density 

N 

0(N) = 1+ E E (-1)Jo,,...Oi, (36) 
j = l  1 ~ i 1 <  . . .  < t )~<N 
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of the photon field in the presence of an external current J~,(x). N is a 
normalization factor. All the Green's functions are obtained from (32) by 
functional differentiations with respect to the external sources ~7(x), ~ (x)  
and J~,(x). The objects 1,, ...~N(Qx . . . . .  Qu; P) are given by 

I~,,...~,N(Q, ..... Q N ; p )  

1 
N! ~-" Tr[y~,,S(P)'Y~,:S(p-Qi:)'"Y~,, ",S(p-Qi: . . . . .  QiN)] 

[il . . .  iN]  

(37) 

for N = 6, 8,10 . . . .  , and Eli ' ... iN1 denotes a summation over all permutations 
of the indices in (1 . . . . .  N);  

1 4 (i)  

I,,...,,(Qa . . . . .  Q 4 ; P ) = ~  ~ Y'~ ('} 
i = [ i l i2 i3]"  

{" } = Tr[.l.S(p)'y. S(p-Qi,) . . . 'y . ,3S(p-Qi -Qi . -Q6)]  

(38) 

1 0 0 0 
3! Op ~',, Op",2 0p.,~Trtv~,,S(p) 1 + (39) 

and ~(~} denotes a summation over all permutations of the indices in z" ' [ i t i2 i3]"  

(1 . . . . .  i , . . .  ,4) with the index i omitted in the latter. Finally we have the well 
known expression for I~,o,2(Qx, Q2; p): 

I~,,~,2(Q1,Q2; P)= Tr[y~,,S( P + -~  )Y~,~S( P - - ~  )] 

+ 1 + ~ -  Ql~--~p .~ 

We may now apply the ie prescription in (4), and apply our regulariza- 
tion procedure by the substitution of the measures of integrations over the 
internal loops in (33) as 

m2 )28, 
(dQi) ~ (dQi) Q~ + m 2 -~-e(Q2 + rn z) i = 1 , 2  . . . . .  N (41) 

Having done this, we obtain a regularization of a fully gauge-invariant 
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procedure for QED through the vacuum-to-vacuum transition amplitude 
yielding regularized Feynman rules. It is interesting to apply the regulariza- 
tion procedure to compute, for example, the self-mass of the electron to 
lowest order in a, as a function of the regularization parameter 8 for 8 - 0. 
To this end the proper self-energy part of the electron propagator (cf., Jauch 
and Rohrlich, 1976) is given in a Euclidean metric to be: 

~ ( p ) =  2ie 2 (dk~) y (..__p - k )__.._+ 2___M_M ( m 2 )28 

Upon writing 

1 
( p - k ) 2 +  M 2 

1 M 2 

( p - k )  2 ( e - k ) 2 [ ( p - k ) 2 +  M 

1 1 ( k 2 + m  2 ~k21 +(m2)  28 ( k 2 + m 2 )  28 (k2) 28 

(42) 

(43) 

(44) 

and using the four-dimensional averages: 

( p  k) 2 p~ '  ( p - k )  2 = 2p~ ~-> 

in a standard notation, we obtain for 8M (a = e2/4r 

3 a M (  8 M = 4 ~  r ~----~)+Mc, (46) 

where c 1 is independent of the parameter 8 in the limit 8 ---, 0. The factor 
(1 /28)  replaces the familiar logarithmic divergence term in 8M. Our proce- 
dure is different from the dimensional regularization one and proceeds by 
adopting the regularization in (41) in general, and, for QED, by developing 
first a gauge-invariant procedure for (0+ 10_ ), through the tensors ir~, ... ~N 
in (35), by Schwinger's intuitive appealing method, and then applying the 
regularization in (41). The similar study for non-Abelian gauge theories is 
much more difficult and will be discussed in a subsequent report; the role of 
the parameter 8 in the language of renormalization group methods will be 
also analyzed. 
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